XMP 2021-2022 DM $N^{\circ}2$ (3/2)

I. La règle d'Abel

- 1. Soit (u_n) une suite de nombres réels ou complexes, telle que la suite (S_n) de ses sommes partielles soit bornée, et (ε_n) une suite de réels positifs tendant vers zéro en décroissant. On veut prouver que la série $\sum \varepsilon_n u_n$ est convergente (résultat connu sous le nom de « règle d'Abel »).
 - a. Prouver que la série $\sum (\varepsilon_k \varepsilon_{k+1})S_k$ est convergente.
 - **b.** En écrivant, $u_k = S_k S_{k-1}$ pour $k \ge 1$, prouver que $\sum_{k=1}^n \varepsilon_k u_k = \varepsilon_n S_n \varepsilon_1 S_0 + \sum_{k=1}^{n-1} (\varepsilon_k \varepsilon_{k+1}) S_k$.
 - c. Conclure.

2. Applications

- a. Donner une nouvelle démonstration du théorème des séries alternées utilisant la règle d'Abel.
- **b.** Si $\sum a_n$ est une série réelle ou complexe convergente, prouver la convergence de $\sum \frac{a_n}{n}$.

II. Convergence et convergence absolue de
$$\sum \frac{\sin kx}{k^{\alpha}}$$

Soit x un réel. On étudie la série $\sum \frac{\sin kx}{k^{\alpha}}$. Par périodicité et imparité, on se restreindra à x dans l'intervalle $[0,\pi]$ et on écartera les valeurs triviales x=0 et $x=\pi$.

- 3. Prouver que la suite $(\sin kx)$ ne tend pas vers zéro.
- 4. Pour quelles valeurs du paramètre α peut-on affirmer sans problème :
 - i. la convergence absolue de la série étudiée ?
 - ii. sa divergence?
- 5. On suppose ici $0 < \alpha \le 1$.
 - **a.** Calculer, pour n entier, la somme $\sum_{k=1}^n \sin kx$. En déduire la convergence de la série $\sum \frac{\sin kx}{k^{\alpha}}$.
- b. On désire prouver que cette série ne converge pas absolument. Pour cela, justifier la convergence de la série $\sum \frac{\cos 2kx}{k^{\alpha}}$, et en déduire la divergence de la série $\sum \frac{\sin^2 kx}{k^{\alpha}}$. Conclure.

III. Un exemple de groupement de termes

On se propose ici d'étudier la convergence de la série $\sum \frac{\cos 2k\pi/3}{k}$ de façon élémentaire, c'est-à-dire sans employer la règle d'Abel. L'idée pour cela est de regrouper les termes de cette série trois par trois. On noter (σ_n) la suite des sommes partielles de cette série.

1

- **6.** Pour n entier positif, on pose $p_n = \sum_{k=3n+1}^{3n+3} \frac{\cos 2k\pi/3}{k}$. Étudier la série de terme général p_n .
- 7. a. En déduire la convergence de la suite extraite (σ_{3n}) .
 - **b.** Que peut-on dire des suites extraites (σ_{3n+1}) et (σ_{3n+2}) ?
 - c. Conclure.

IV. Récurrences linéaires doubles avec perturbation

Étant donnée une suite réelle (a_n) , on associe à tout couple (u_0,u_1) de nombres réels la suite (u_n) définie à partir de ces deux valeurs initiales u_0 et u_1 par la relation de récurrence (R):

$$\forall n \ge 1, \quad u_{n+1} = u_n + a_{n-1}u_{n-1}.$$

- 8. On suppose dans cette question que la suite (a_n) est constante égale à k
 - a. On prend $k = -\frac{3}{16}$. Prouver que la suite (u_n) converge quelles que soient les valeurs de u_0 et u_1 . Quelle est sa limite? Que peut-on dire de la convergence de la série $\sum u_n$?
- **b.** On prend $k = \frac{3}{4}$. Donner une condition nécessaire et suffisante sur u_0 et u_1 pour que la suite (u_n) converge.
- **9.** On suppose dans cette question que les a_n sont des <u>entiers relatifs non nuls</u> (donc des éléments de \mathbb{Z}^*).
 - a. Prouver que si la suite (u_n) converge, sa seule limite possible est 0.
- **b.** On considère la suite (ε_n) vérifiant la relation de récurrence (R) avec les conditions initiales $\varepsilon_0 = 1$ et $\varepsilon_1 = 0$. Prouver que cette suite ne tend pas vers 0 (on pourra constater que les ε_n sont tous entiers).
- c. Soit la suite (λ_n) vérifiant la relation de récurrence (R) avec les conditions initiales $\lambda_0 = \lambda \in \mathbb{R}$ et $\lambda_1 = 0$. Prouver que pour tout entier n, on a $\lambda_n = \lambda \varepsilon_n$.
- **d.** Prouver qu'une suite (u_n) non identiquement nulle, vérifiant la relation (R) et qui s'annule au moins une fois ne tend pas vers 0.
- 10. On suppose dans cette question que la suite (a_n) est à termes positifs et que $u_0 \ge 0$ et $u_1 > 0$.
 - a. Étudier, à partir du rang 1, le sens de variation de la suite (u_n) .
 - **b.** Justifier l'inégalité, valable pour tout réel $x: 1+x \leq e^x$. Établir, pour n supérieur ou égal à 2, l'inégalité $u_{n+1} \leq u_n \, \exp{(a_{n-1})}$ En déduire que la convergence de la série $\sum a_n \,$ entraı̂ne la convergence de la suite (u_n) .
- c. Établir réciproquement que si la suite (u_n) converge, alors la série $\sum a_n$ converge (indication : la convergence de la suite (u_n) est équivalente à la convergence de quelle série dépendant de u_n ?).
- 11. Dans cette question, on ne suppose plus les a_n positifs, mais on suppose que la série $\sum a_n$ est absolument convergente. On considère alors la suite (v_n) définie par

$$v_0 = \left| u_0 \right|, \ \ v_1 = \left| u_1 \right|, \ \ \text{et} \ \ \forall \, n \geq 1, \ \ v_{n+1} = v_n + \left| a_{n-1} \right| v_{n-1} \,.$$

- a. Comparer $\left|u_{n}\right|$ et $\left|v_{n}\right|$ et prouver que la suite $\left(v_{n}\right)$ est convergente.
- **b.** Étudier la convergence absolue de la série $\sum (u_{n+1} u_n)$, puis la convergence de la suite (u_n) .
- 12. La question 11. montrant que la suite (u_n) converge dès que la série $\sum a_n$ converge absolument, il semble assez naturel de se demander ce qui se passe si la série $\sum a_n$ est juste supposée convergente. C'est pourquoi l'on choisit dans cette partie de prendre $a_n = \frac{(-1)^n}{n+1}$.

Pour peu que u_n soit non nul, on posera $q_n = \frac{u_{n+1}}{u_n}$; il pourra alors être utile d'écrire la formule de récurrence vérifiée par la suite (q_n) .

a. On suppose que l'on a l'inégalité $\frac{1}{2} \le q_3 \le 2$.

Prouver alors que q_n existe pour tout entier $n \geq 3$, et que l'on a encore $\frac{1}{2} \leq q_n \leq 2$.

b. Prouver que l'on a les développements asymptotiques suivants :

$$q_{n+1} = 1 + O(\frac{1}{n}) \text{ , puis } q_{n+1} = 1 + \frac{(-1)^n}{n} + O(\frac{1}{n^2}) \text{ .}$$

- **c.** En déduire la convergence de la suite (u_n) .
- **d.** Prouver qu'il est possible de choisir u_0 et u_1 de telle sorte que $u_3=u_4=1$. Que dire alors de la suite (u_n) ?

Prouver de même qu'il est possible de choisir u_0 et u_1 de telle sorte que $u_3=1$ et $u_4=2$. Que dire alors de la suite (u_n) ?

b. Prouver que la suite (u_n) converge quelles que soient les valeurs de u_0 et u_1 .