$XMP \ 2021-2022$ DM $N^{\circ}10$

Partie I

On désigne par φ une fonction continue de $\mathbb R$ dans $\mathbb R$ ou $\mathbb C$, et on envisage l'équation différentielle :

$$(E): y''(x) + \varphi(x)y(x) = 0.$$

On suppose dans cette partie que φ est paire et de classe \mathcal{C}^{∞} sur \mathbb{R} .

- **1.** Soit y est une solution de (E) sur I. Montrer y est de classe \mathcal{C}^{∞} et que la fonction $x \mapsto y(-x)$ est aussi une solution de (E).
- **2.** a. Justifier l'existence et l'unicité de deux solutions de (E), notées f_0 et f_1 , vérifiant les conditions suivantes :

$$f_0(0) = 1$$
 ; $f_0'(0) = 0$; $f_1(0) = 0$; $f_1'(0) = 1$.

- **b.** Prouver grâce à la question 1. que la fonction f_0 est paire et la fonction f_1 impaire.
- **3.** On suppose que f_0 ne s'annule pas sur \mathbb{R} , et l'on pose $u = \frac{f_1}{f_0}$.
 - a. Montrer que la fonction u' ne s'annule pas, et exprimer $\frac{u''}{u'}$ en fonction de $\frac{f_0'}{f_0}$.
 - **b.** En déduire qu'il existe une constante B, que l'on calculera, telle que $u' = \frac{B}{f_0^2}$.
 - **c.** On note u_0 la primitive de $\frac{1}{f_0^2}$ qui s'annule en 0. Exprimer f_1 en fonction de f_0 et de u_0 .
- 4. Dans cette question, $\varphi(x) = -(1+x^2)$ pour tout réel x.
- a. Chercher une solution particulière de l'équation différentielle sous la forme e^z où z est une fonction que l'on déterminera.
 - b. Résoudre complètement l'équation différentielle (on ne cherchera pas à calculer l'intégrale rencontrée).

Partie II

On envisage dans cette partie l'équation différentielle suivante :

$$(E): x^2y'' + (x^2 + 1)y = 0.$$

- 5. a. Peut-on affirmer l'existence d'une solution S de (E) définie sur \mathbb{R}_+^* et vérifiant S(1)=0, S'(1)=1?
 - **b.** Peut-on affirmer l'existence d'une solution T de (E) définie sur \mathbb{R} et vérifiant T(0) = 0, T'(0) = 1?

1

6. Prouver que la seule solution de (E) développable en série entière autour de 0 est la fonction nulle.

On désigne désormais par S la solution de (E) définie sur \mathbb{R}_+^* vérifiant S(1)=0 et S'(1)=1. Pour éviter de voir massacrées des évidences, je me sens obligé de signaler que l'équation différentielle (E) peut aussi s'écrire $y''+(1+\frac{1}{r^2})y=0$... (!!!).

- 7. On pose, pour $x \in \mathbb{R}_+^*$, $E(x) = S'^2(x) + (1 + \frac{1}{x^2})S^2(x)$.
 - **a.** Prouver que la fonction E décroît sur \mathbb{R}_+^* .
 - **b.** En déduire que S est bornée sur $[1, +\infty[$.
- 8. f et g désignent ici deux fonctions numériques continues sur un même intervalle I de \mathbb{R} vérifiant $\forall x \in I, f(x) > g(x)$. On note u_1 et u_2 des solutions respectives des équations différentielles $(E_1): y'' + f(x)y = 0$ et $(E_2): y'' + g(x)y = 0$.

On suppose que x_1 et x_2 sont deux annulations consécutives de la fonction u_2 sur I, donc que l'on a $x_1 < x_2$, $u_2(x_1) = u_2(x_2) = 0$ et, pour fixer les idées, on supposera que $\forall x \in]x_1, x_2[, u_2(x) > 0$.

On suppose enfin que u_1 ne s'annule pas sur $J=]x_1,x_2[$.

- a. On définit sur I la fonction $D={u_1u_2}'-{u_1}'u_2$. Étudier les variations de D sur J.
- **b.** Trouver une impossibilité, et en déduire que u_1 s'annule sur J.
- **c.** Prouver que si x et y sont deux annulations consécutives d'une solution non nulle v de (E_2) , toute solution de (E_1) s'annule entre x et y.
- 9. a. Rappeler l'expression de la solution générale de l'équation différentielle y'' + y = 0.
 - **b.** Expliciter, pour tout a > 0, une solution de l'équation y'' + y = 0 qui s'annule en a et en $a + \pi$.
- c. Prouver, en utilisant le résultat de la question 4., que la fonction S s'annule sur tout segment de la forme $[a, a+\pi]$ avec a>0.
- - a. Prouver que les intégrales $\int_{1}^{+\infty} \cos t \, g(t) \, dt$ et $\int_{1}^{+\infty} \sin t \, g(t) \, dt$ sont absolument convergentes.
- **b.** Sous quelle forme la méthode de variation des constantes donne-t-elle la solution générale de l'équation différentielle (E_q) ?
 - c. En déduire que la solution générale de (E_q) peut s'écrire :

$$y(x) = \int_{x}^{+\infty} \sin(t - x)g(t)dt + \alpha \cos x + \beta \sin x,$$

où α et β sont deux constantes réelles.

d. Prouver que
$$\lim_{x \to +\infty} \int_{x}^{+\infty} \sin(t-x)g(t)dt = 0$$
.

- 11. a. Prouver que l'intégrale $\int\limits_{1}^{+\infty} \frac{S(t)}{t^2} \mathrm{d}t$ est absolument convergente.
 - **b.** En déduire l'existence de deux constantes réelles α et β telles que $\lim_{x \to +\infty} \left(S(x) \alpha \cos x \beta \sin x \right) = 0$.

On a donc prouvé que la fonction S possède à l'infini un comportement sinusoïdal.

Partie III

Dans cette partie, on désigne par U l'ouvert suivant de \mathbb{R}^2 : $U =]0,1[\times]0,+\infty[$, et par $\overline{U} = [0,1]\times[0,+\infty[$ son adhérence. On désigne par c une fonction de classe \mathcal{C}^1 de [0,1] dans \mathbb{R} fixée dans toute la partie. On appelle solution du problème \mathcal{DP} une fonction numérique f, de classe \mathcal{C}^2 sur U, se prolongeant à \overline{U} en une fonction continue, et vérifiant les conditions (1), (2) et (3) suivantes :

(1) :
$$\forall (x,t) \in U$$
, $\frac{\partial f}{\partial t}(x,t) - \frac{\partial^2 f}{\partial x^2}(x,t) = 0$;

(2) :
$$\forall t \ge 0$$
, $f(0,t) = f(1,t) = 0$;

(3) :
$$\forall x \in [0,1], \quad f(x,0) = c(x).$$

L'objectif de cette partie est de prouver l'existence et l'unicité d'une solution au problème \mathcal{DP} , et d'expliciter cette solution sous forme d'une série.

- **12.** a. Soit a un réel positif. À quelle condition sur le réel la fonction $(x,t) \mapsto e^{-at} \sin \omega x$ est-elle solution sur U de l'équation aux dérivées partielles (1)?
- **b.** À quelles conditions sur a et sur la fonction $(x,t) \mapsto e^{-at} \sin \omega x$ vérifie-t-elle les conditions (1) et (2) ? Que vaut alors f(x,0) pour $x \in [0,1]$?
- 13. On admet (c'est un résultat issu de la théorie de Fourier) l'existence d'une suite de réels (b_n) telle que :

$$i. \ \forall x \in [0,1], \quad c(x) = \sum_{n=1}^{+\infty} b_n \sin n\pi x \ ;$$

ii. la série $\sum b_n$ converge absolument.

a. On pose, pour
$$(x,t) \in \overline{U}$$
, $g(x,t) = \sum_{n=1}^{+\infty} b_n e^{-n^2 \pi^2 t} \sin n \pi x$.

Prouver que la fonction g est bien définie sur \overline{U} et qu'elle y est continue.

Montrer que la fonction q vérifie les conditions (2) et (3).

b. Justifier qu'à x fixé, la fonction $t \mapsto g(x,t)$ est une fonction de classe \mathcal{C}^1 de la variable t sur $]0,+\infty[$, et calculer sa dérivée (donc la dérivée partielle de q par rapport à t).

On admettra que, de la même façon, on peut dériver deux fois g sous le signe Σ par rapport à x.

- c. Conclure.
- 14. Soient f_1 et f_2 deux solutions du problème \mathcal{DP} , et $f=f_1-f_2$.
 - a. Montrer que f vérifie les conditions (1) et (2), et calculer f(x,0) pour $x \in [0,1]$.
 - **b.** On pose, pour t > 0, $I(t) = \int_{0}^{1} f^{2}(x, t) dx$.
 - **c.** Prouver que *I* décroît sur $[0,+\infty[$.
 - **d.** Prouver que I = 0 et conclure.