XMP 2021-2022 Petit DM $N^{\circ}8$

On désigne par $\mathcal{M}_{n,p}$ l'espace des matrices réelles à n lignes et p colonnes ; à tout élément $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ de

 $\mathcal{M}_{n,1}$ on associe le vecteur $x=(x_1,\ldots,x_n)$ de \mathbb{R}^n ;

Si
$$x = (x_1, ..., x_n)$$
 et $y = (y_1, ..., y_n)$ sont dans \mathbb{R}^n , on pose $(x | y) = X^T \cdot Y = \sum_{i=1}^n x_i y_i$ et $||x|| = ||X|| = \sqrt{(x | x)}$;

Enfin, si
$$A$$
 est un élément de $\mathcal{M}_{n,p}$, on pose $N(A) = \sup_{X \neq 0} \frac{\left\|AX\right\|}{\left\|X\right\|}$.

L'objet de ce problème est l'étude de quelques questions liées à la résolution approchée d'équations de la forme AX = B, où A est un élément de $\mathcal{M}_{n,p}$, B un élément de $\mathcal{M}_{n,1}$, et X une inconnue de $\mathcal{M}_{p,1}$.

Dans la partie \mathbf{I} , A est supposée carrée et inversible. Il existe alors une solution unique. Il s'agit de savoir comment est modifiée cette solution quand B subit une variation ΔB . Dans la partie \mathbf{II} , on étudie le cas d'équations ne possédant pas de solution ; on se contente alors de « pseudo-solutions ».

Partie I

Dans cette partie, A est une matrice de $\mathcal{M}_{n,n}$, supposée inversible.

- 1. Soit X l'unique solution de l'équation AX = B, où B est une matrice non nulle donnée de $\mathcal{M}_{n,1}$. Quand B devient $B + \Delta B$, X devient $X + \Delta X$ tel que $A(X + \Delta X) = B + \Delta B$.
 - **a.** Prouver que pour tout élément M de $\mathcal{M}_{n,n}$ et tout X de $\mathcal{M}_{n,1}$, on a $\|MX\| \leq N(M)\|X\|$.
 - **b.** Prouver que si M et N sont deux éléments de $\mathcal{M}_{n.n}$, on a $N(AB) \leq N(A)N(B)$.
 - c. Montrer que :

$$\frac{\left\|\Delta X\right\|}{\left\|X\right\|} \le N(A)N(A^{-1})\frac{\left\|\Delta B\right\|}{\left\|B\right\|} \quad \text{et que} \quad \mu(A) = N(A)N(A^{-1}) \ge 1 \; .$$

- 2. On pose $A' = A^{\mathrm{T}}A$.
- **a.** Prouver que les valeurs propres de A' sont réelles et qu'il existe une matrice orthogonale P, une matrice diagonale D, telles que $D = P^{-1}A'P$.
- **b.** Soit λ une valeur propre de A' et X_0 un vecteur propre associé. En calculant ${}^tX_0A'X_0$, prouver que $\lambda>0$.
- c. Les valeurs propres de A' étant notées $(\lambda_i')_{1 \leq i \leq n}$ et supposées rangées dans l'ordre croissant, montrer que pour tout Y de $\mathcal{M}_{n,1}$, on a :

$$\|A\,Y\| \leq \sqrt{{\lambda_n}'}\,\|Y\|\,,\;\text{et qu'il existe}\;\;Y_0\;\;\text{non nul vérifiant}\;\;\|A\,Y_0\| = \sqrt{{\lambda_n}'}\,\|Y_0\|\,.$$

En déduire la valeur de N(A).

 \mathbf{d} . Etant données deux matrices carrées M et N de même taille avec M inversible, prouver que MN et NM ont le même polynôme caractéristique.

En remplaçant A par A^{-1} dans la question précédente, en déduire la valeur de $\mu(A)$ en fonction des valeurs propres de A'.

- **3. a.** On suppose A orthogonale. Calculer $\mu(A)$.
 - **b.** On suppose A symétrique. Exprimer $\mu(A)$ en fonction des valeurs propres de A.
 - **c.** Application numérique :

On donne
$$A = \begin{pmatrix} \sqrt{2} & 1 \\ 0 & \sqrt{2} \end{pmatrix}$$
 et $B = \begin{pmatrix} 2\sqrt{2} \\ 2 \end{pmatrix}$. Calculer $\mu(A)$, et déterminer ΔB (avec par exemple

 $\|\Delta B\| = 1 \text{) de telle sorte que } \frac{\|\Delta X\|}{\|X\|} = \mu(A) \frac{\|\Delta B\|}{\|B\|} \quad \text{(ce qui prouve que l'inégalité obtenue à la question } \textbf{1.c.} \text{ ne peut être améliorée dans le cas général)}.$

Partie II

Dans cette partie, A est une matrice de $\mathcal{M}_{n,p}$, B un élément de $\mathcal{M}_{n,1}$, et on suppose qu'il n'existe aucune matrice X de $\mathcal{M}_{p,1}$ telle que AX = B (équation notée (E) dans la suite). On désigne par Φ_A l'application linéaire de \mathbb{R}^p dans \mathbb{R}^n de matrice A dans les bases canoniques de \mathbb{R}^p et \mathbb{R}^n .

On appelle pseudo-solution de (E) toute matrice X_0 de $\mathcal{M}_{p,1}$ telle que :

$$\begin{split} \left\|AX_0-B\right\|&=\inf\left\{\|AX-B\|,\ X\in\mathcal{M}_{p,1}\right\}\\ (\text{ou encore }\left\|\Phi_A(x_0)-b\right\|&=d(b,\operatorname{Im}\Phi_A)\ \text{ avec }\ d(b,\operatorname{Im}\Phi_A)&=\inf\left\{\left\|\Phi_A(x)-b\right\|,\ x\in\mathbb{R}^p\right\}\right). \end{split}$$

- **4. a.** En étudiant la projection orthogonale de b sur $\operatorname{Im}\Phi_A$, prouver l'existence de pseudo-solutions à l'équation (E).
 - **b.** On suppose de plus Φ_A injective. Montrer que (E) admet alors une pseudo-solution unique.
 - c. Montrer que les trois propriétés suivantes sont équivalentes :
 - i. x est pseudo-solution de (E);
 - ii. $\forall y \in \mathbb{R}^p$, $(\Phi_A(y)|\Phi_A(x)-b)=0$;
 - $iii. A^{T}AX = A^{T}B.$
- 5. Application à la régression linéaire :

Dans le plan affine euclidien muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , on donne n points A_k de coordonnées (x_k, y_k) , $1 \le k \le n$. Soit D la droite d'équation y = ax + b.

On définit, pour $1 \le k \le n$, les points H_k de coordonnées $(x_k, ax_k + b)$, et on se propose de déterminer D de façon à ce que $\sum_{k=1}^n \|M_k H_k\|^2$ soit minimum.

Montrer que ce problème revient à la recherche des pseudo-solutions d'une équation AX = B où A, B et X sont trois matrices que l'on explicitera.

À quelle condition sur les points M_k l'application Φ_A est-elle injective ? Déterminer alors la pseudo-solution du système.